Burbot Conservation Aquaculture: A Decade of Advancements in the Kootenai Region

Neil Ashton
University of Idaho

Photo by Eric Engbretson
Burbot: The Only Freshwater Cod

Common Ling (*Molva molva*)

10 Myr...or mtDNA genetic distance of ~18%

(Van Houdt et al. 2003)

Burbot (*Lota lota*)
Success in Colonizing Freshwater

Rooted in marine ancestry

- High fecundity – up to 3 million eggs
- Broadcast spawning (Sorokin 1971)
- Cool, pristine, circumpolar habitats
Burbot are an Indicator Species

- Spawns in mid-winter at 0–6°C (Becker 1983)
- Sensitive to changes in climate & hydrology
Burbot are an Indicator Species

- Life cycle spans a gradient of ecosystems

Larvae
Pelagic & Floodplains

Juveniles
Littorals & Tributaries

Adults
Benthos & Tributaries
Burbot are an Indicator Species

- Distribution spans many landscapes
 - Habitat alteration
 - Pollution
 - Invasive species
 - Climate change
 - Mismanaged fisheries

(Stapanian et al. 2010)

(adapted from McPhail 1997)
Burbot in Idaho: The Lower Kootenai River

- Population imperiled
- < 100 adult burbot
- Recruitment?

Habitat alterations
- Libby Dam (1975)
- Hyperoligotrophy
- Water temperature
- Diking/Channeling
- Floodplain degradation
Pacific NW Distribution

= Native
= Invasive?
Burbot Restoration in Idaho

Goal
Restore a viable, self-sustaining, harvestable population in the Lower Kootenai River

(Illustration courtesy of Kootenai Valley Resource Initiative)
Conservation Aquaculture

- Wild stock functionally extirpated
- Donor population needed for broodstock
- Supplementation with hatchery fish
Multi-Agency Effort

U.S. Army Corps of Engineers

IDAHo FISh & GAME

U.S. FISH & WILDLIFE SERVICE

BRITISH COLUMBIA

Northwest Power and Conservation Council

University of Idaho
Research Forges Collaboration

• An outlet for creative planning
• A vehicle for progress through innovation
• A refuge for interests extrinsic to policy
Population Genetics Research

Paragamian et al. 1999

- Pacific clade
- Upper and lower Kootenai stocks genetically different
- Suitable donor population identified in Moyie Lake, BC

Campbell et al. 2014 - verified
Donor Population Research

- Adults & eggs collected from Moyie Lake
Donor Population Research

Neufeld et al. 2007 – 2011

- Abundance estimates
- Mark–recapture methods
- Age structure
- Spawning surveys
- Egg fertilization
Jensen et al. 2007 – 2008

- Captive spawning
- Semen cryopreservation

Foltz et al. 2012

- Oocyte development
Early Life Stage Research

Jensen et al. 2010 – 2011

- Egg incubation
- Larval rearing

Egan et al. 2014

- Embryo development
Polinski et al. 2010 – 2013

- Disease susceptibility
- Therapeutics

Terrazas et al. 2015

- Stress-induced diseases

University of Idaho
Extensive Hatchery Research

Paragamian et al. 2011
• Cage-culture in ponds
• Zooplankton abundance

Barron et al. 2013
• Pond culture

University of Idaho
Intensive Hatchery Research

Barron et al. 2012 – 2013

- Larval growth & survival
- Juvenile growth & survival
- Cannibalism
- Grading
Intensive Hatchery Research

Ashton et al. 2013 – 2015

- Mass production
- Artificial & genetic tagging
Restoring the Population

Source: IDFG
Aquaculture Milestones

Twin Rivers Hatchery

- Completed in 2015
- ~275K fingerling burbot released this fall
- World’s largest burbot aquaculture program
Other Conservation Milestones

Monitoring & Evaluation

• Large-scale PIT tagging
• Genetic markers
• Age-based survival
• Growth patterns
• Telemetry
• Migration patterns
• Spawning behavior
Future Aquaculture Research

Conservation

- Recruitment bottlenecks
- Thermal optimums & hydropower operations

Commercial

- Potential as seafood
- Model for cod research
Q & A

Acknowledgments

Dr. Ken Cain (UI)
Sue Ireland (KTOI)
Dr. Shawn Young (KTOI)
Nate Jensen (KTOI)
Ryan Hardy (IDFG)
T.J. Ross (IDFG)
Pete Rust (IDFG)
Mike Faler (USFW)
Matt Neufeld (BC)
Sara Stephenson (BC)
James Barron
Josh Egan
John Foltz
Vaughn Paragamian
Mark Polinski
Marc Terrazas