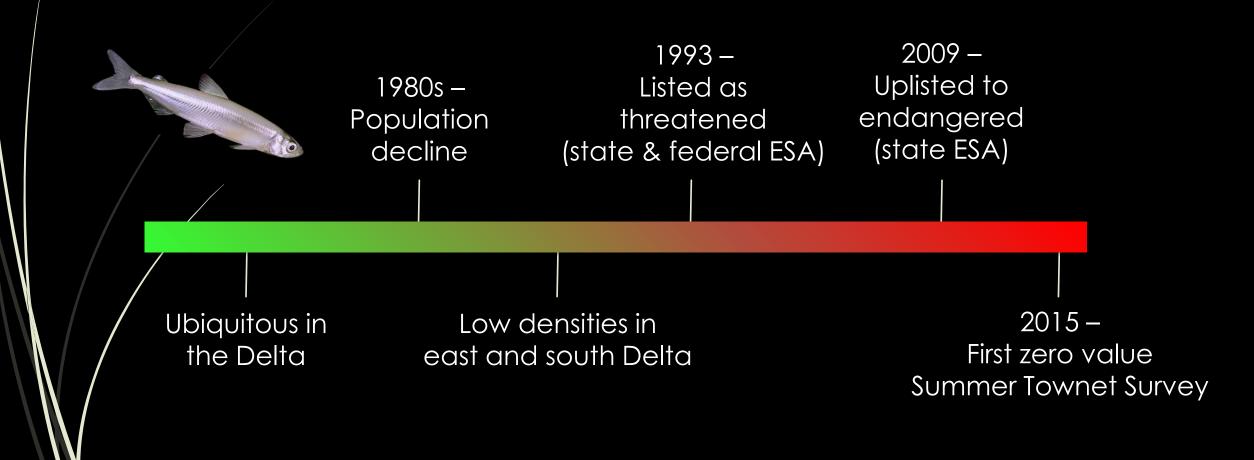
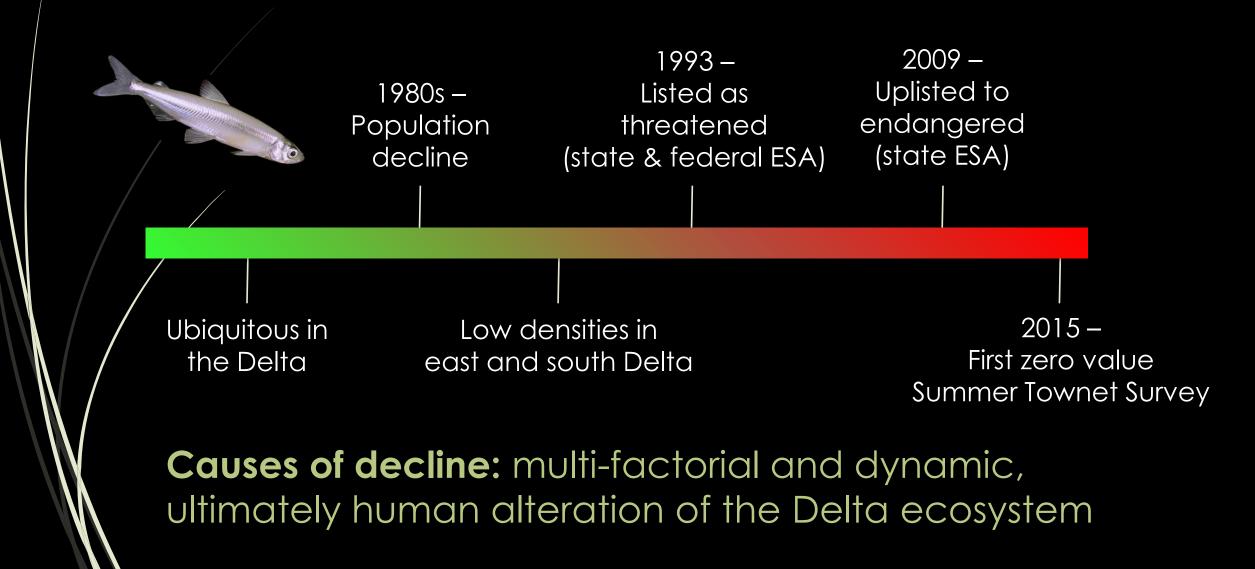
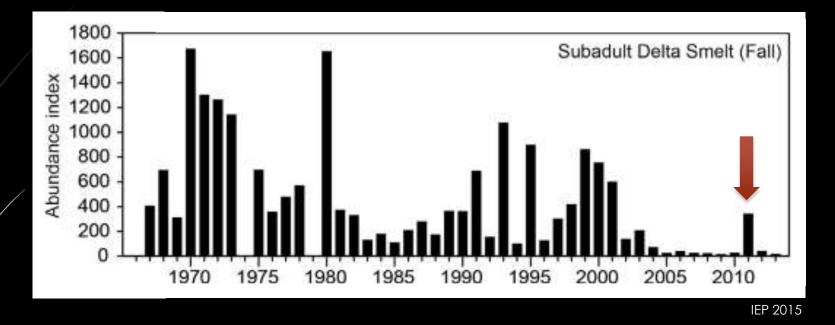
Development of a Hatchery and Genetic Management Plan for Delta Smelt (Hypomesus transpacificus)

DECEMBER 6TH, 2017


deltacouncil.ca.gov

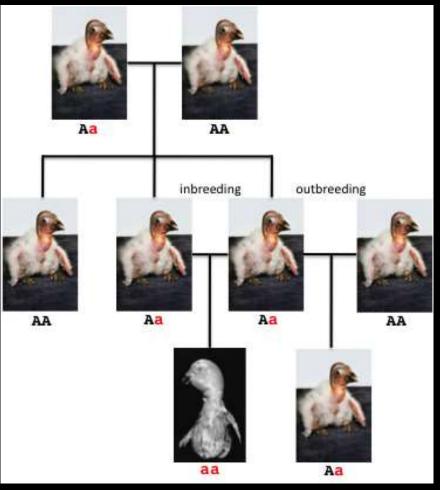

Daphne Gille, Melinda Baerwald, Ted Sommer, Tien-Chieh Hung, and Mandi Finger


Decline of Delta Smelt

Decline of Delta Smelt

Decline of Delta Smelt

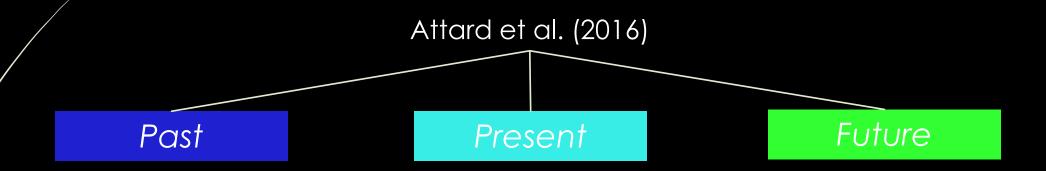
- In 2011, following a wet year, short-lived increase in Delta Smelt abundance
- Delta Smelt show resilience when conditions are favorable
- Habitat restoration is underway (completed before extinction?)

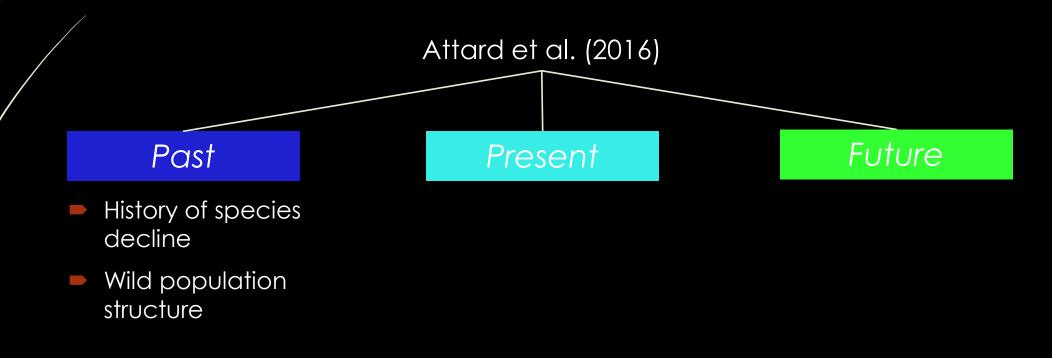

Refuge population at the FCCL

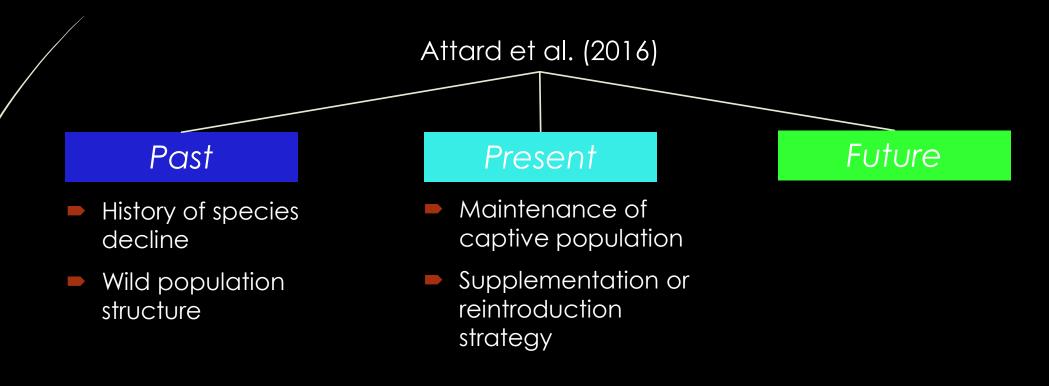
- Use cultured fish to bolster wild population in the short term
- Refuge population established in 2008 at FCCL using wild fish
- Safeguard against extinction and provide fish for research

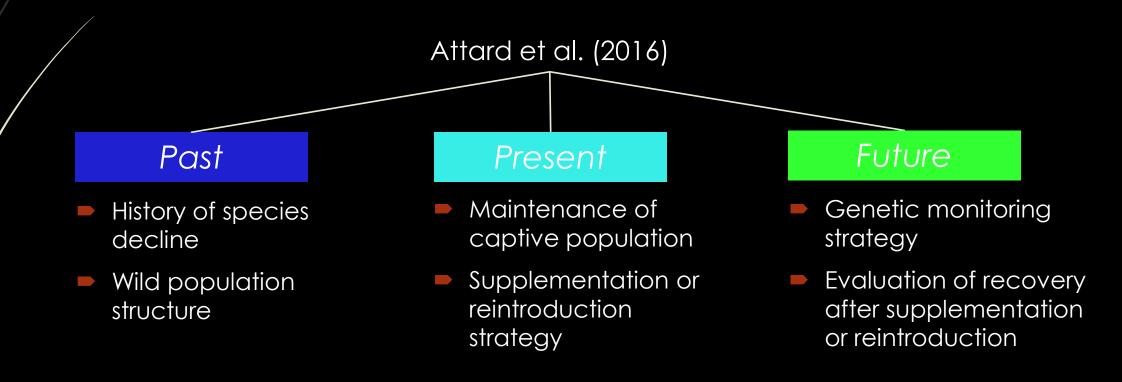
Importance of genetic management

- Genetic management at the FCCL is in place (later)
- Genetic diversity = raw material for natural selection acts
- Greater genetic diversity = greater adaptive potential
- Loss of genetic diversity can lead to inbreeding and reduced fitness effects




Ralls et al. (2000); media.oregonlive.com


- An HGMP will provide guidance and best practices for population supplementation and reintroduction
- Tool if/when such action is necessary (dictated by managers)
- Recommendations for the Fish Technology Center (FTC) and conservation hatchery (Rio Vista, CA)



Fisch et al. (2011)

- 15 microsatellite markers
- 2003, 2005, 2007 & 2009

Fisch et al. (2011)

Past

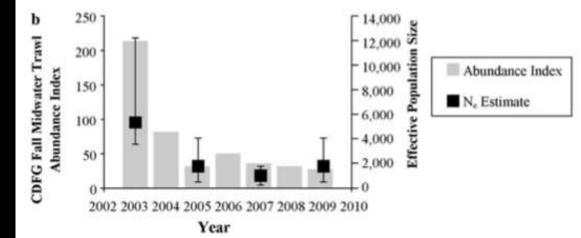
- 15 microsatellite markers
- 2003, 2005, 2007 & 2009

No reduction in genetic diversity

Table 1 Sample size, allelic richness, levels of heterozygosity and the inbreeding coefficient of all delta smelt sampled in five regions throughout their range in the San Francisco Bay-Delta over four sampling years

1 07																								
	2003						2005						2007						2009					
	N	A_R	H_O	H_E	HW	FIS	N	A_R	Ho	H_E	HW	FIS	N	A_R	H_O	H_E	HW	FIS	N	A_R	H_O	H_E	HW	F_{IS}
Region																								
Suisun Bay	11	12	0.83	0.82	0	-0.01	31	12	0.79	0.81	0	0.03	-	-	-	-	-	-	15	12	0.82	0.83	0	0.01
Montezuma Slough	15	12	0.83	0.84	0	0.01	114	13	0.82	0.84	0	0.02	91	13	0.82	0.83	0	0.01	91	13	0.82	0.83	1	0.01
Lower Sacramento River	93	12	0.82	0.82	0	0.01	42	12	0.82	0.82	1	0.01	42	13	0.79	0.83	0	0.04	151	13	0.82	0.83	2	0.01
Cache Slough Complex	57	12	0.81	0.82	1	0.01	87	13	0.79	0.83	0	0.04	60	13	0.83	0.83	0	-0.01	-	_	-	-	-	-
Deep Water Ship Channel	_	_	-	-	-	_	42	13	0.77	0.83	4	0.07	143	13	0.82	0.84	3	0.02	108	12	0.82	0.80	0	0.03
All populations pooled		20	0.82	0.83		0.01		21	0.80	0.83		0.034		21	0.82	0.83		0.015		21	0.81	0.83		0.02
Total	176				1		316				5		336				3		365				3	

N number of individuals, A_R allelic richness^a; H_O observed heterozygosity, H_E expected heterozygosity, HW number of loci with significant Hardy–Weinberg disequilibrium^b, F_{IS} inbreeding coefficient


^a Allelic richness (A_R) based on a minimum sample size of 156 diploid individuals for the pooled value compared between years and on 20 diploid individuals when compared within and between years for each region

^b Statistically significant at P < 0.05 after Bonferroni correction</p>

Fisch et al. (2011)

Past

- 15 microsatellite markers
- 2003, 2005, 2007 & 2009
- No reduction in genetic diversity
- Lack of population structure
- Persistent bottleneck
- Decline in effective population size

Topics to be covered in the HGMP:

- Update wild population genetics
- Use SNP markers and high throughput sequencing
- Improve resolution of indices of genetic diversity
- Evaluate functional genetic diversity/adaptation to captivity

Topics to be covered in the HGMP:

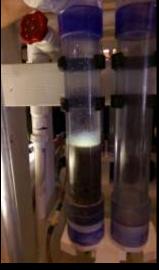
- Update wild population genetics
- Use SNP markers and high throughput sequencing
- Improve resolution of indices of genetic diversity
- Evaluate functional genetic diversity/adaptation to captivity

Conserv Genet (2017) 18:1011–1022 DOI 10.1007/s10592-017-0949-3

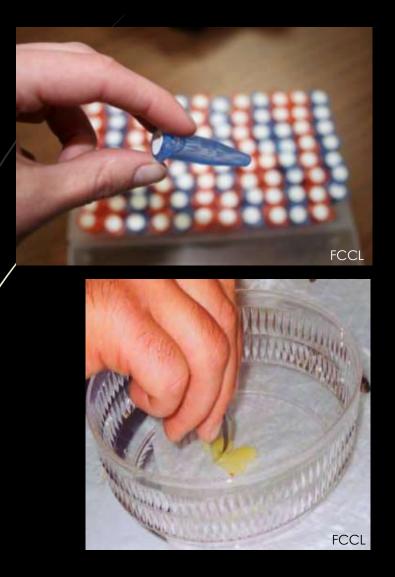
RESEARCH ARTICLE

Selection and genetic drift in captive versus wild populations: an assessment of neutral and adaptive (MHC-linked) genetic variation in wild and hatchery brown trout (*Salmo trutta*) populations

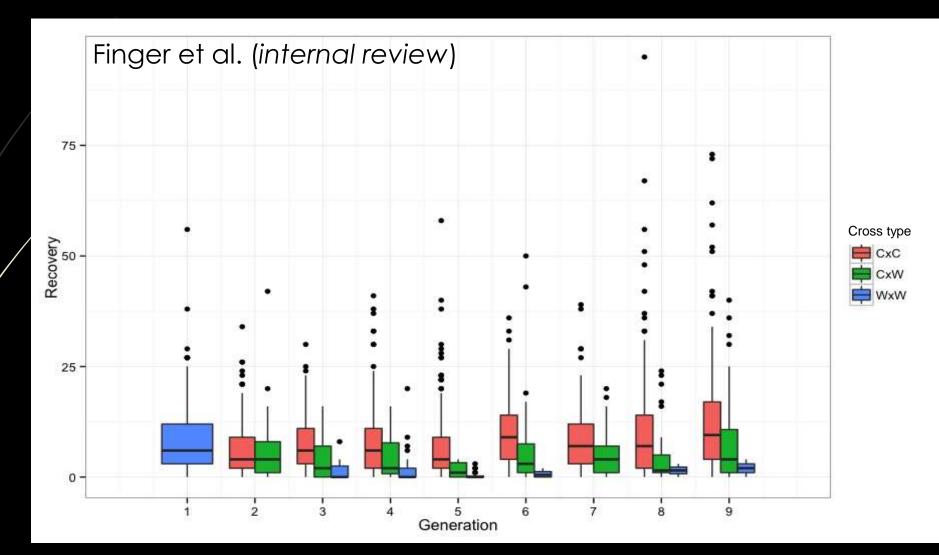
Tamara Schenekar¹ · Steven Weiss¹


- Genetic management plan for the FCCL (Finger and May 2015):
 Captive spawning initiated in 2008 (F₁₀ in 2017)
- Controlled mate selection
- Minimize kinship and preserve genetic diversity

Genetic management plan for the FCCL (Finger and May 2015):
Captive spawning initiated in 2008 (F₁₀ in 2017)
Controlled mate selection


Minimize kinship and preserve genetic diversity

Incorporate wild breeders



Equalize family size

- Collect ~100 wild Delta Smelt annually
- Tag ripe individuals, fin clips to GVL
- Genotype at 12 microsatellite loci
- Pedigree reconstruction/parentage
- Recommendations to minimize kinship and represent the greatest number of pair crosses from previous year
- Combine equal numbers of fertilized eggs from 8 families per tank

- Low pairwise F_{ST} among generations (-0.0001 to 0.006) comparing wild, cultured, and total refuge population
- High effective population size (Mean $N_e/N = 0.81$)
- Low mean inbreeding (0.0008)
 - Evidence of domestication selection (lower fitness in wild)

Topics to be covered in the HGMP:

Minimize domestication selection (alter current protocol)

- Minimize time spent in hatchery (minimal ancestry)
- Release at egg stage (Wakasagi hatching frames)
- Increase wild fish representation (spawn wild >1x, unrelated)
- Aim for mid-level effective population size (slow selection)
- Enriched environment
- Life skills training (e.g., predator avoidance)
- Soft release/acclimatization

15.plala.or.jp/niru_04/houryu.htm

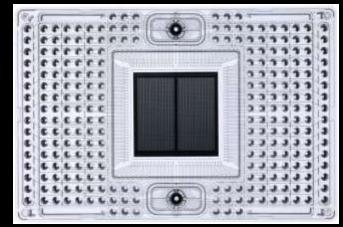
Topics to be covered in the HGMP:

Refuge population at the FTC and the conservation hatchery (Rio Vista, CA; partnership with UC Davis)

Adapting genetic management practices for FTC, scale up
 Depends upon availability of wild fish

Topics to be covered in the HGMP:

Population supplementation and reintroduction strategy



Work with agency partners, establish goals

Identification of adequate habitat is associated with success

Topics to be covered in the HGMP: Genetic monitoring strategy

Lew et al. (2015)
RADseq to identify SNPs
96.96 Fluidigm SNP panel
100% assignment
Low cost (~\$11/sample)

fluidigm.com

Topics to be covered in the HGMP:

Evaluation of recovery after supplementation or reintroduction

- Genetic comparisons between released, captive, and wild populations
- Assess survival/abundance, recruitment, diversity, inbreeding, and potential connectivity
- Practice adaptive management, learn from our mistakes

Delta Smelt HGMP in Summer 2019

Brian Schreier

