Effect of Broodstock Age on Precocial Maturation of Male Chinook Salmon Smolts - Minijacks

Peter F. Galbreath*, Curtis M. Knudsen, Chad A. Stockton, Lea R. Medeiros, Andrew L. Pierce, and Ilana J. Koch

- Substantial hatchery production of salmon and steelhead for harvest augmentation and/or for supplementation of depressed natural populations
- However, hatchery returns include high proportions of less desirable (small) age 3 jack males – associated with accelerated growth in hatchery
- Studies also indicate that that age at maturity is a heritable/genetic trait
- Believed that hatchery production associated with general shift in age structure towards smaller younger salmon/steelhead returns
- Conference on Age and Size at Maturity of Chinook Salmon and other Pacific Salmonids, May 17-19, 2011, Portland OR

Broodstock management

- The "old way" was to spawn larger females with limited numbers of the biggest (oldest) bucks
- Then, geneticists insisted random mix of sizes/ages (including jacks, 5-10%), 1:1 matings, etc. to preserve genetic diversity within stocks
- But, mating is not random nor 1:1 in nature, with older larger fish being more successful
- And, in light of age structure trend in adult returns, currently (unofficial?) move back towards limiting jacks and favoring older/larger broodfish

- Besides increased jack returns, hatcheries also produce sexually maturing (age 2) male smolts minijacks
- Minijacks do not grow to adult (or even jack) size and do not contribute to fisheries, nor to natural spawning
- Therefore, minijacks represent a substantial economic and management loss to hatchery programs, i.e., if male smolt minijack rate = 50%, is "equivalent" (relative to mgt. objectives) to 25% mortality of released smolts...

- Rate of minijack production associated with high growth and lipid levels of parr during fall-winter period prior to smoltification
- Strong correlation of smolt size at release and minijack rate
- But, minijack rates also vary across stocks/hatchery programs – inferring genetic influence on minijack rate

Harstad et al. 2014 Variation in minijack rate among hatchery populations of Columbia River Basin Chinook Salmon. TAFS 143:768-778.

- ... So, if adult age at maturity is a heritable trait, and older larger broodstock will return older larger progeny,
- And, if minijack rate has a heritable basis,

i.e.,

• Will use of older larger broodstock also reduce minijack rate?

Study Design:

- We initiated a 3-broodyear (2014, 2015 and 2016) study to measure the "Effect of Parent Age on Rate of Minijack Production Among Male Progeny of Spring Chinook"
- Study conducted at the Cle Elum Supplementation Research Facility (CESRF), Cle Elum WA, managed by the Yakama Nation
- CESRF broodstock = 100% natural origin (no hatchery influence on age at maturation)
- Funding from BPA through CRITFC Accords Project 2009-009-00

 Produce factorial/matrix matings (approx. 200 eggs/mating) with female and male broodfish of different ages (age 1 = precocious parr/microjack):

- Rear fry to swim-up
- Collect 50 fry per mating, pool into common raceway, and rear to smolt stage
- in April (concurrent with CESRF smolt release time) sacrificed study fish - length, weight, sex ID
- Then, blood and tissue (fin clip) sample from males
- Perform plasma 11-ketotestosterone (11-KT) assays (Dept. of Biology, Univ. of Idaho)
- Frequency distribution analysis of 11-KT to categorize individual smolts: low 11-KT (non-maturing) and high 11-KT (maturing minijack)

 Extract DNA from fin tissue (CRITFC Molecular Genetics Laboratory – Hagerman Fish Culture Experiment Station, Hagerman ID)

- Genotype for standardized SNP panel, and perform parentage analysis
- Identify full-sibling male progeny groups
- Calculate % minijacks within each progeny group

• Analyze minijack rates across cross types for effect of female and male parent age

RESULTS – By 2014 and BY2015

 April 11-KT measures distinctly bimodal – smolts exhibited low 11-KT (normal non-maturing), or high 11-KT (maturing minijack)

• Subset of BY 2014 smolts non-lethally sampled in April 2016, PIT tagged and returned to raceway, reared until Sept 2016 (spawning season)

• Medeiros et al. poster NWFCC 2016 - 101 surviving males; April 11-KT for 100 (99%) correctly predicted Sept maturation status

 Confirmation that April 11-KT reliably predicts individuals as a minijack versus non-maturing smolt

Distinct separation between low 11-KT (non-maturing smolts) and high 11-KT (maturing minijacks)

April 11-KT vs September GSI (BY2014 Surviving Non-Lethally Sampled Males)

Minijack (FL - 22 cm; 8½")

BY 2015 – also clear distinction between low 11-KT and high 11-KT

RESULTS

% minijacks per male progeny group (n≈20/group)

	<u>BY 2014 minijack rates</u>			<u>B۱</u>	BY 2015 minijack rates			
	<u>4x3</u>	<u>4x4</u>	<u>4x5</u>	<u>4x</u>	<u>1 4x3</u>	<u>4</u> 2	<u>x4</u>	
	0.13	0.17	0.04	0.0	0.00	0.00	0.52	
	0.18	0.17	0.25	0.1	9 0.04	0.04	0.53	
	0.22	0.23	0.41	0.2	6 0.05	0.05	0.55	
	0.25	0.27	0.55	0.3	9 0.08	0.06	0.56	
	0.30	0.45	0.56	0.4	8 0.13	0.14	0.61	
	0.32	0.53	0.68	0.4	8 0.15	0.17	0.64	
	0.38	0.57		0.4	8 0.19	0.17	0.65	
	0.44	0.59		0.5	5 0.23	0.18	0.73	
	0.50	0.62		0.5	5 0.32	0.25	0.74	
	0.52	0.64		0.5	6 0.35	0.27	0.78	
	0.58	0.65		0.6	0 0.35	0.27	0.84	
	0.60	0.68		0.7	0 0.40	0.29	0.85	
	0.60	0.69		0.8	3 0.41	0.31	0.85	
	0.61	0.75		0.8	7 0.43	0.36	1.00	
	0.67	0.76		0.8	8 0.44	0.40		
	0.77	0.79		0.9	1 0.57	0.43		
	0.79	0.86		0.9	1 0.70	0.50		
	0.81	0.91		0.9	5 0.71			
	0.85	0.94			0.80	_		
	1.00	0.95						
A	• • • •	• • • •	0.42	0 -	0 0 0 0 0	2		
Average	0.50	0.59	0.42	0.5	9 0.33	0.	44	
StDev	0.25	0.25	0.23	0.2	7 0.24	0.	28	
Number	20	20	6	18	19	3	81	

<u>BY 2014</u> – no difference in minijack rate for progeny of age 3, 4 or 5 male parents crossed to age 4 females <u>BY 2015</u> – minjack rate significantly higher for progeny of microjack male relative to age 3 jack male parents; progeny of age 4 male parents intermediate

ANOVA for BY 2014 and 2015 data combined – minijack rates significantly different: 4x3 < 4x4

H

- Possible maternal effects? (e.g., differences within age 4 females for length/weight, egg/fry size)
- Paired t-tests for age 3 and age 4 males crossed to the same age 4 female:

<u>4x3</u>	<u>4x4</u>	<u>diff</u>			
0.524	0.909	-0.385	t-Test: Paired Two Sample for Me	eans	
0.579	0.750	-0.171			
0.696	0.762	-0.066		4x3	4x4
0.833	0.955	-0.121	Mean	0.520	0.636
1.000	0.615	0.385	Variance	0.068	0.061
0.500	0.174	0.326	Observations	21	21
0.808	0.636	0.171	Pearson Correlation	0.272	
0.176	0.174	0.003	Hypothesized Mean Difference	0	
0.769	0.450	0.319	df	20	
0.176	0.227	-0.051	t Stat	-1.734	
0.769	0.941	-0.172	P(T<=t) one-tail	0.049	
0.609	0.565	0.043	t Critical one-tail	1.725	
0.250	0.690	-0.440	P(T<=t) two-tail	0.098	
0.438	0.857	-0.420	t Critical two-tail	2.086	
0.375	0.792	-0.417			
0.125	0.690	-0.565			
0.320	0.857	-0.537			
0.222	0.792	-0.569			
0.600	0.654	-0.054			
0.300	0.273	0.027			
0.846	0.588	0.258			

BY 2014 Paired t-tests - female crossed to an age 3 and an age 4

BY 2015 Paired t-tests - female crossed to an age 3 and an age 4

<u>4x3</u>	<u>4x4</u>	<u>Diff.</u>
0.318	0.364	-0.045
0.318	0.273	0.045
0.000	0.050	-0.050
0.000	0.000	0.000
0.077	0.038	0.038
0.231	0.313	-0.082
0.412	0.842	-0.430
0.412	0.500	-0.088
0.400	0.852	-0.452
0.400	0.611	-0.211
0.150	0.55	-0.400
0.190	0.636	-0.446
0.704	0.560	0.144
0.706	0.273	0.433
0.348	0.250	0.098
0.130	0.174	-0.043
0.429	0.136	0.292
0.053	0.400	-0.347
0.444	0.846	-0.402
0.037	0.652	-0.615
<u>0.348</u>	<u>0.524</u>	<u>-0.176</u>
0.291	0.421	

t-Test: Paired Two Sample for Means

	4x3	4x4
Mean	0.291	0.421
Variance	0.042	0.071
Observations	21	21
Pearson Correlation	0.370	
Hypothesized Mean Difference	0	
df	20	
t Stat	-2.215	
P(T<=t) one-tail	0.019	
t Critical one-tail	1.725	
P(T<=t) two-tail	0.039	
t Critical two-tail	2.086	

Recommendations to reduce minjack production?

- Do not use microjacks as male broodstock (duh!)
- Use more age 5 fish? maybe, but insufficient data
- Jack broodstock yield <u>fewer</u> minijacks than age 4 males, therefore use more jacks... (huh?)
- Likely most effective option growth manipulation in fall-winter period prior to smoltification

• BUT, what other genetic factors are behind the <u>very</u> wide variation in minijack rate within cross-types, and how are they interacting with spawner age ... ???

 Combined analysis for all 3 broodyears in study will follow sampling of BY 2016 smolts in April 2017