The Mac & Jack study:
Size and domestication effects
on minijack rates of summer
Chinook salmon from McCall
Fish Hatchery, Idaho.
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Critical Periods in Maturation Decision
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Critical Periods in Maturation Decision
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Minijack (MJ) rates from Columbia River

and Snake River basins: WA & OR

T | Mean MJ rates:

Spring Chinook* = 32%
56% 11% ) (BYs 1999-2010)
21% 17% ! !
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Brood Years 2013-2015
-Rapid River Hatchery

-McCall Hatchery
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Minijack rate is related to growth/size:
Integrated vs. Segregated Programs

Integrated programs
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Harstad et al. 2014
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Threshold trait

continuous distribution of factors that contribute to a trait

A

(i.e. size, growth rate, lipid level)
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Threshold trait

If you exceed a threshold, than you will

develop the trait
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Threshold trait
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Both genetics and environment can affect this

relationship




Often this relationship is

not just an on/off switch

Response variable = binomial
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Often this relationship is

not just an on/off switch

Response variable = binomial

A
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Probability

(No) 0 —




Often this relationship is

not just an on/off switch

Response variable = binomial

A

(Yes) 1 — X X «
>
=
Py Midpoint =
'r% ________________________ Length @ 50%
0O probability of
g maturation

(No) 0 — X X
>




Often this relationship is

not just an on/off switch

Response variable = binomial
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Example: Reaction Norm Approach to

Maturation

PROCEEDINGS
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Genetic variation in threshold reaction norms
for alternative reproductive tactics in male

Atlantic salmon, Salmo salar

Jacinthe Piché’, Jeffrey A. Hutchings'* and Wade Blanchard?

! Department of Biology, and > Department of Mathematics and Statistics, Dalhousie University,
Halifax, NS B3H 471, Canada
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 Atlantic Salmon and early male maturation (parr)
« Common garden experiment (controlled environment)

« 4 populations + hybrid crosses to test population
differences in early male maturation




Example: Reaction Norm Approach to

Maturation
P
S i - Different populations
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Results = There is a genetic basis for this
relationship
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We wanted to apply this
technique to studying

precocious maturation
closer to home

e Reaction Norms (via logistic regression analysis) is a
tool that we can use to compare thresholds for
different populations/genetic groups



Mac & Jack Study Objectives:

1. Can we demonstrate genetic difference ~ —
In early male maturation (INT vs. SEG) .
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1. Can we demonstrate genetic difference
In early male maturation (INT vs. SEG)

2. Can we demonstrate environmental
effects on early male maturation
(Feed Treatments)

3. Does competition play a role (interaction
between genetics and environment)

Bonus: Can we use reaction norms to assess the critical

period In maturation decision



McCall Hatchery
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McCall Hatchery
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TO

T1

T2

TF

Experiment Timeline:

3 March, 2015

Total rearing time from ponding was 14 months

Fish were reared on ambient photoperiod

v

2-5 May, 2016




Ponding (P): 3 March

P

TO

T1

T2

TF

tYy

« 4 8-t
recirculating

tanks at
10°C

¢ 2

replicates/g
enetic line

* 600+

fish/tank



26 August (TO): PIT tagging

 All fish were
Implanted with a
PIT tag

* Length & Weight
recorded




26 August (TO): Feed Treatments Began

Low Feed = 33% of High Feed ration through winter solstice
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9 Nov (T1) & 26 Jan (T2): Individual
Size checks




2 -5 May (TF): Assessing minijacks

« (Gonads were visually inspected
to determine maturation status

* All fish were scanned for PIT

 |ndividual size recorded




Growth rates of individual fish

TO

T1

T2

TF

Specific Growth Rate = In(WT, - WT,)/(t, - t,)*100

h 1: Aug - Nov
h 2: Nov - Jan
e | 3: Jan - May




Size & Condition Factor

Aﬁg Nbv Jén Méy
--- SEG LOW - —-- INTLOW
—— SEG HIGH —— INT HIGH

J




Size & Condition Factor

Aﬁg Nbv Jén Méy
--- SEG LOW - —-- INTLOW
—— SEG HIGH —— INT HIGH

J




Size & Condition Factor
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* High feed > Low feed during the fall
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* High feed > Low feed during the fall

* INT fish had higher condition
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Specific Growth Rate
(% change in WT/day)
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(Coef. = 0.28, P = 0.037)




Logit [MATURITY] = FEED + GENETIC LINE
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(Coef. = 0.28, P = 0.037)

Minijack rate (%)
> 3

-
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FEED X GENETIC LINE is significant (P = 0.045)



Genetic effect on threshold?

* INT-line fish tended to have slightly lower threshold in both
feed groups
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Genetic effect on threshold?

* INT-line fish tended to have slightly lower threshold in both
feed groups
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High and

Low Feed treatments have the same

parents so why do they look different?
1 e.g. Integrated:
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High and

Low Feed treatments have the same

parents so why do they look different?
1 e.g. Integrated:

« Differences in growth
that happened after
the critical window
can affect this
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o
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High and

Low Feed treatments have the same

parents so why do they look different?
1 e.g. Integrated:

Example: High feed fish
had higher growth which
shifted the apparent
threshold to the right
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High and

Low Feed treatments have the same

parents so why do they look different?
1 e.g. Integrated:

© - ‘/ Hi Hypothesis: during the
’ critical decision window,

these two reaction norms
U
o ,/ should appear the same
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Timing of critical window for Maturation:

e.g. Integrated:

AUGUST

High < Low

60 70 80 90 100 110

Probability of Maturation
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Timing of critical window for Maturation:

e.g. Integrated:

AUGUST NOVEMBER

High < Low Low = High
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LENGTH (mm)

Probability of Maturation



Timing of critical window for Maturation:

e.g. Integrated:
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Timing of critical window for Maturation:

e.g. Integrated:
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Conclusions

60+

Objective 1.
 The level of domestication had an effect on
minijack rate
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 The level of domestication had an effect on
minijack rate
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Objective 2: 47%

* Feed treatment had the greatest
influence on minijack rate
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Objective 3: LOW HIGH
« The INT line had higher growth rates that SEG line at low feed,

suggesting a potential advantage to the INT line in competing for
resources.
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Objective 1. 4%

 The level of domestication had an effect on
minijack rate
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Objective 2:
 Feed treatment had the greatest
Influence on minijack rate
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Objective 3: Low HIGH
« The INT line had higher growth rates that SEG line at low feed,

suggesting a potential advantage to the INT line in competing for
resources.

Bonus:
« Tracking thresholds across time provides further evidence that the fall

may be a critical window for initiation of minijack maturation.
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